3.1.22 \(\int \frac {x^3 (A+B x+C x^2)}{a+b x^2+c x^4} \, dx\) [22]

3.1.22.1 Optimal result
3.1.22.2 Mathematica [A] (verified)
3.1.22.3 Rubi [A] (verified)
3.1.22.4 Maple [C] (verified)
3.1.22.5 Fricas [C] (verification not implemented)
3.1.22.6 Sympy [F(-1)]
3.1.22.7 Maxima [F]
3.1.22.8 Giac [B] (verification not implemented)
3.1.22.9 Mupad [B] (verification not implemented)

3.1.22.1 Optimal result

Integrand size = 28, antiderivative size = 278 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {B x}{c}+\frac {C x^2}{2 c}-\frac {B \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (A b c-b^2 C+2 a c C\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{4 c^2} \]

output
B*x/c+1/2*C*x^2/c+1/4*(A*c-C*b)*ln(c*x^4+b*x^2+a)/c^2+1/2*(A*b*c+2*C*a*c-C 
*b^2)*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/c^2/(-4*a*c+b^2)^(1/2)-1/2*B 
*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b+(2*a*c-b^2)/(-4 
*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/2*B*arctan 
(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b+(-2*a*c+b^2)/(-4*a*c+b 
^2)^(1/2))/c^(3/2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.1.22.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.36 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\frac {4 B c x+2 c C x^2-\frac {2 \sqrt {2} B \sqrt {c} \left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} B \sqrt {c} \left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (A c \left (-b+\sqrt {b^2-4 a c}\right )+\left (b^2-2 a c-b \sqrt {b^2-4 a c}\right ) C\right ) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\sqrt {b^2-4 a c}}-\frac {\left (-A c \left (b+\sqrt {b^2-4 a c}\right )+\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) C\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 c^2} \]

input
Integrate[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]
 
output
(4*B*c*x + 2*c*C*x^2 - (2*Sqrt[2]*B*Sqrt[c]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4 
*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 
- 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2*Sqrt[2]*B*Sqrt[c]*(b^2 - 2*a*c 
+ b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a* 
c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((A*c*(-b + Sqrt[b 
^2 - 4*a*c]) + (b^2 - 2*a*c - b*Sqrt[b^2 - 4*a*c])*C)*Log[-b + Sqrt[b^2 - 
4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] - ((-(A*c*(b + Sqrt[b^2 - 4*a*c])) + 
(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*C)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2 
])/Sqrt[b^2 - 4*a*c])/(4*c^2)
 
3.1.22.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2193, 27, 1442, 1480, 218, 1578, 1200, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 2193

\(\displaystyle \int \frac {x^3 \left (C x^2+A\right )}{c x^4+b x^2+a}dx+\int \frac {B x^4}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {x^3 \left (C x^2+A\right )}{c x^4+b x^2+a}dx+B \int \frac {x^4}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 1442

\(\displaystyle \int \frac {x^3 \left (C x^2+A\right )}{c x^4+b x^2+a}dx+B \left (\frac {x}{c}-\frac {\int \frac {b x^2+a}{c x^4+b x^2+a}dx}{c}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle \int \frac {x^3 \left (C x^2+A\right )}{c x^4+b x^2+a}dx+B \left (\frac {x}{c}-\frac {\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \int \frac {x^3 \left (C x^2+A\right )}{c x^4+b x^2+a}dx+B \left (\frac {x}{c}-\frac {\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}\right )\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {1}{2} \int \frac {x^2 \left (C x^2+A\right )}{c x^4+b x^2+a}dx^2+B \left (\frac {x}{c}-\frac {\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}\right )\)

\(\Big \downarrow \) 1200

\(\displaystyle \frac {1}{2} \int \left (\frac {C}{c}-\frac {a C-(A c-b C) x^2}{c \left (c x^4+b x^2+a\right )}\right )dx^2+B \left (\frac {x}{c}-\frac {\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (\frac {\left (2 a c C+A b c+b^2 (-C)\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{c^2 \sqrt {b^2-4 a c}}+\frac {(A c-b C) \log \left (a+b x^2+c x^4\right )}{2 c^2}+\frac {C x^2}{c}\right )+B \left (\frac {x}{c}-\frac {\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}\right )\)

input
Int[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x]
 
output
B*(x/c - (((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x 
)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c 
]]) + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sq 
rt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])) 
/c) + ((C*x^2)/c + ((A*b*c - b^2*C + 2*a*c*C)*ArcTanh[(b + 2*c*x^2)/Sqrt[b 
^2 - 4*a*c]])/(c^2*Sqrt[b^2 - 4*a*c]) + ((A*c - b*C)*Log[a + b*x^2 + c*x^4 
])/(2*c^2))/2
 

3.1.22.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1200
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g* 
x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && In 
tegersQ[n]
 

rule 1442
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d^3*(d*x)^(m - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), 
x] - Simp[d^4/(c*(m + 4*p + 1))   Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b*(m + 
 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x 
] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2* 
p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2193
Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_S 
ymbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[Pq, x, 2*k]*x^(2*k), 
{k, 0, q/2 + 1}]*(d*x)^m*(a + b*x^2 + c*x^4)^p, x] + Simp[1/d   Int[Sum[Coe 
ff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q + 1)/2}]*(d*x)^(m + 1)*(a + b*x^2 + c 
*x^4)^p, x], x]] /; FreeQ[{a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ 
[Pq, x^2]
 
3.1.22.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.31

method result size
risch \(\frac {C \,x^{2}}{2 c}+\frac {B x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{3} \left (A c -C b \right )-b B \,\textit {\_R}^{2}-C a \textit {\_R} -B a \right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{2 c}\) \(86\)
default \(\frac {\frac {1}{2} C \,x^{2}+B x}{c}+\frac {\frac {\left (-A b c \sqrt {-4 a c +b^{2}}+4 A a \,c^{2}-A \,b^{2} c -2 C \sqrt {-4 a c +b^{2}}\, a c +C \sqrt {-4 a c +b^{2}}\, b^{2}-4 C a b c +C \,b^{3}\right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (-2 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}-4 B a b c +B \,b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{c \left (4 a c -b^{2}\right )}+\frac {-\frac {\left (-A b c \sqrt {-4 a c +b^{2}}-4 A a \,c^{2}+A \,b^{2} c -2 C \sqrt {-4 a c +b^{2}}\, a c +C \sqrt {-4 a c +b^{2}}\, b^{2}+4 C a b c -C \,b^{3}\right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (-2 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}+4 B a b c -B \,b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{c \left (4 a c -b^{2}\right )}\) \(419\)

input
int(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/2*C*x^2/c+B*x/c+1/2/c*sum((_R^3*(A*c-C*b)-b*B*_R^2-C*a*_R-B*a)/(2*_R^3*c 
+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.1.22.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 61.66 (sec) , antiderivative size = 1329593, normalized size of antiderivative = 4782.71 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
Too large to include
 
3.1.22.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

input
integrate(x**3*(C*x**2+B*x+A)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.1.22.7 Maxima [F]

\[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\int { \frac {{\left (C x^{2} + B x + A\right )} x^{3}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
1/2*(C*x^2 + 2*B*x)/c + integrate(-(B*b*x^2 + (C*b - A*c)*x^3 + C*a*x + B* 
a)/(c*x^4 + b*x^2 + a), x)/c
 
3.1.22.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3519 vs. \(2 (232) = 464\).

Time = 1.32 (sec) , antiderivative size = 3519, normalized size of antiderivative = 12.66 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
-1/4*(C*b - A*c)*log(abs(c*x^4 + b*x^2 + a))/c^2 + 1/2*(C*c*x^2 + 2*B*c*x) 
/c^2 + 1/8*((2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 
4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s 
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*B 
*c^2 - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a 
*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqr 
t(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*sqrt(2 
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2 - 4*a*c)*a 
*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*B*abs(c) - (2*b^5*c^4 - 12*a*b^3*c^5 + 
 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)* 
b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^ 
3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^ 
3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c...
 
3.1.22.9 Mupad [B] (verification not implemented)

Time = 8.37 (sec) , antiderivative size = 2696, normalized size of antiderivative = 9.70 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
int((x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4),x)
 
output
symsum(log((B^3*a^2*b*c - B*C^2*a^3*c + A^2*B*a^2*c^2 + B*C^2*a^2*b^2 - 2* 
A*B*C*a^2*b*c)/c^2 - root(128*a*b^2*c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2*c^6 
*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*b^3*c^3*z^3 - 128*A*a*b^2*c^4*z^3 - 1 
6*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b*c^3 
*z^2 - 72*A*C*a*b^3*c^2*z^2 + 8*A*C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 28* 
B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^3*z^2 + 32*C^2*a*b^4*c*z^2 - 56*C^2*a^2 
*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2 - 
96*A^2*a^2*c^4*z^2 - 4*C^2*b^6*z^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*a^2*b* 
c^2*z + 12*A*C^2*a^2*b^2*c*z + 16*A*B^2*a^2*b*c^2*z + 8*A^2*C*a*b^3*c*z - 
4*A*B^2*a*b^3*c*z - 4*A*C^2*a*b^4*z - 4*A^3*a*b^2*c^2*z - 16*B^2*C*a^3*c^2 
*z + 16*A*C^2*a^3*c^2*z - 16*C^3*a^3*b*c*z + 4*C^3*a^2*b^3*z + 16*A^3*a^2* 
c^3*z + 2*A^3*C*a^2*b*c + 4*A*B^2*C*a^3*c - 2*A^2*C^2*a^3*c + 2*A*C^3*a^3* 
b - A^2*B^2*a^2*b*c - B^2*C^2*a^3*b - A^2*C^2*a^2*b^2 - A^4*a^2*c^2 - B^4* 
a^3*c - C^4*a^4, z, k)*(root(128*a*b^2*c^5*z^4 - 16*b^4*c^4*z^4 - 256*a^2* 
c^6*z^4 - 256*C*a^2*b*c^4*z^3 + 128*C*a*b^3*c^3*z^3 - 128*A*a*b^2*c^4*z^3 
- 16*C*b^5*c^2*z^3 + 16*A*b^4*c^3*z^3 + 256*A*a^2*c^5*z^3 + 160*A*C*a^2*b* 
c^3*z^2 - 72*A*C*a*b^3*c^2*z^2 + 8*A*C*b^5*c*z^2 - 48*B^2*a^2*b*c^3*z^2 + 
28*B^2*a*b^3*c^2*z^2 + 40*A^2*a*b^2*c^3*z^2 + 32*C^2*a*b^4*c*z^2 - 56*C^2* 
a^2*b^2*c^2*z^2 - 4*B^2*b^5*c*z^2 - 32*C^2*a^3*c^3*z^2 - 4*A^2*b^4*c^2*z^2 
 - 96*A^2*a^2*c^4*z^2 - 4*C^2*b^6*z^2 + 4*B^2*C*a^2*b^2*c*z - 32*A^2*C*...